INNOVATIVE FERTIGUNGSTECHNOLOGIEN FÜR EINEN SYSTEMEFFIZIENTEN LEICHTBAU

M.Sc. Tobias Joppich

BMBF-Technologiegespräch „Neue Materialien und Fertigungstechnologien für den Leichtbau”
08.11.2018, Stuttgart
Content

- The Multi Material Approach
- System Efficient Lightweight Technology
- Promising Technologies
- Project Case Studies
 - BMBF Smile
 - BMBF MoPaHyb
Multi-material design as most promising lightweight technology approach

- CoFRC-DiCoFRC and FRC-metal hybrids

Source: Porsche

New Opportunities & New Challenges

Further development of **methods**, **materials** and **processes** to access opportunities

Source: Adient Automotive
System Efficient Lightweight Technology

Component performance + Economics

MMP-Approach

Areas of Interaction

- Materials
- Processes
- Methods
- System Efficient Lightweight Design
- Time
- Costs
- Quality

04.12.2018

© Fraunhofer
Promising Technologies for Hybrid Lightweight Components

- Local reinforced Sheet Molding Compound - Tailored SMC
- Durometer Injection Molding
- Wet Compression Molding
- Thermoplastic Tapeplacement in Combination with Hybrid Molding
 - Co-Compression Molding
 - Co-Injection Molding
Tailored SMC – Process Sequence

Flowable glass fiber reinforced SMC
- form complex ribs
- integrate optional metallic inserts
- low material price

Non-flowable carbon fiber reinforced Prepreg
- high mechanical properties
- 50k carbon fibers to reduce material costs
Thermoplastic tape placement and co-molding
From UD-Tape to Hybrid Structures

- **Tapelaying**
 - Blank geometry optimization

- **Consolidation**
 - Pressure distribution & fiber orientation

- **Thermostamping**
 - Forming simulation (fiber re-orientation, wrinkles, …)

- **Co-Molding**
 - Mold filling & temperature field simulation, warpage prediction, structural simulation

Fraunhofer
Thermoplastic tape placement
The efficient route to tailored blanks made of UD tapes
Project Case Studies
Thermoplastic Tapeplacement in Combination with Hybrid Molding

- BMBF SMILE – AP3 Thermoplast
- BMBF MoPaHyb
SMiLE Project – SMiLE lightweight car body for e-mobility
AP3 Thermoplast underbody demonstrator

- Rear underbody floor using local advanced tailored LFT
 - Process development for optimized insert stability and local overmolding
 - Holistic demonstrator development

Sequential UD tape forming simulation

Mold filling simulation using LFT-D

Structure and crash simulation

Dominik Dörr, KIT FAST
Martin Hohberg, KIT FAST
BASF Ultrasim

Demonstrator – Thermoplast underbody: Mold concept
Demonstrator – Thermoplast underbody: Manufacturing

SMiLE Project: Hybrid Thermoplastic Composite Floor Module
Future Hybrid Lightweighting Technologies – 2020

- Small badge sizes, part derivatization and plant investment costs for individual products may inhibit economic feasibility
 - Due to reconfigurable production plants with easy adaptation to similar products the plant efficiency can be improved
 - New business models enable economic production of hybrid components with varying lot sizes

Vision: Adapted value added chain for hybrid lightweight components

- Early benefit of lightweight potential
- Cost reduction of hybrid components
- Economic feasibility also for small lot sizes
- Adaptation to different variants
„MoPaHyb“
Modular production plant for hybrid high performance components

- Development of a modular and reconfigurable production plant using the example of hybrid thermoplastic components
- Development of a plant architecture with production modules and a base control unit using standardized communication protocols
- Demonstration and plant validation via two individual products

![Diagram of production modules](image)
„MoPaHyb“
Modular production plant for hybrid high performance components

Modular plant architecture
- Plug & work functionality
- Fast and efficient reconfiguration (incl. plant control)
- Integrated engineering

Innovative lightweight technologies
- Intelligent tape placement
- Metal-FRP interface optimization
- Modular LFT injection molding aggregate
- Functional handling systems

Plant demonstration
Business model development as exemplary commercialization strategy

Innovative lightweight technologies
- Intelligent tape placement
- Metal-FRP interface optimization
- Modular LFT injection molding aggregate
- Functional handling systems
Demonstration plant and process
Configuration 1

Hybrid CFRP seat backrest
(source: Adient)
Demonstration plant and process

Configuration 2

Hybrid D-LFT underbody component
(source: BMBF MaiQFast)
Plant installation for configuration 1 completed, start of reconfiguration
Fraunhofer ICT, Pfinztal

Dieffenbacher Hydraulic Press

Siemens base control unit

Dieffenbacher Fiberforge

Arburg FDC Aggregate

Siemens base control unit

Kuka robotic and gripper toolbox

wbk IR – Heating module for tailored blanks

A. Raymond supply of metallic load introduction inserts

Supply of metallic reinforcement structures from Trumpf
Fully automated production in configuration 1
Thanks for your kind attention - Any Questions?

CONTACT:

Tobias Joppich, M.Sc.
Fraunhofer-Institut für Chemische Technologie (ICT)
Polymer Engineering Joseph-von-Fraunhofer-Str.7
D-76327 Pfinztal (Berghausen)
Tel.: +49 (0) 721 4640 529

[Email Address] tobias.joppich@ict.fraunhofer.de